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INTRODUCTION 

A LITERATURE survey [l-lo] indicates that heat transfer stud- 
ies for laminar flows in multi-passage circular pipes based on 
temperature distributions including heat generation effects 
are not available. The existing conventional convective heat 
transfer problems in flows of multi-passage tubes are based 
on lumped parameter type analyses [l] which are not rig- 
orous. However, recent interest in the heat generation effect 
on convective heat transfer properties [ll] has led to this 
note where the effect of an arbitrary heat generation density 
in the inner and outer flows on convective heat transfer 
properties of the multi-passage flow is studied. The thickness 
of the separating surface and the resistance of heat con- 
ductivity of the inner separating wall are neglected. It has 
been shown that the Nusselt numbers on the outer surface 
and at the inner separating surface of a multi-passage pipe 
flow can be defined in three different ways. Also shown 
was that the Nusselt numbers depend on two dimensionless 
parameters fl2J: the ratio of the thermal conducti~ties of 
the fluids in the inner and outer passages, kkr and the product 
of kk and the ratio of the Peclet numbers of the flows in 
the inner and outer passages, n = kkkPe, the heat exchanger 
number of the multi-passage flow. 

The effect of heat generation is reflected by the dimen- 
sionless heat generation numbers yi and y0 for the inner and 
outer flows, respectively, where y = (~H)/[k~(~e)], L. is the 
radius of the conduit, H the heat generation volume density, 
k the thermal conductivity, and Pe the Peclet number 
[ll, 131. The Nusselt numbers in this multi-passage flow are 
defined relative to the mixed, combined bulk temperature of 
the inner and outer region flows. 

TEMPERATURE FIELDS 

By neglecting the thermal resistance of the inner separation 
wall, and considering the sections located sufficiently 
removed from both entrances of the conduit where hydro- 
dynamically and thermally fully developed flow conditions 
prevail, the continuity of the temperature distribution is 
maintained by the forms : 

T, = cz+E”(X, Y), T, = cz+E;“+E,(X, Y) (1) 
where T,, T, and E,, E, indicate the temperature and excess 
temperature distributions in the outer and inner regions, 
respectively, for a constant heat flux condition, and E,, rep- 
resents the temperature at the inner separation surface for a 
constant heat flux case. 

The continuity of the two temperature fields to be 
determined is satisfied by 

p0 = &,tX, Y) and F = &+& (2) 
together with the boundary condition r, = 0 at the wall. 

It must be noted that this selection cannot impose any 
restriction and it can be used without any loss of generality 
of the problem. Therefore, the quantities TO, F,, &, $ and 
& represent temperatures and cap temperatures in the outer, 
and inner regions, and at the separation surface, respectively, 
for the case of constant wall temperature. 

The energy equations to be satisfied in the inner and outer 
Aow regions are 
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where r, is the mixed mean temperature of the combined 
flow [12]. 

The energy equations to be satisfied, suitable for the 
constant wall temperature condition, in each flow region 
expressed in dimensionless variables are (131 
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where 

l+k,A 
a= 

em0 + kc%, + k,Ae,i 
(6) 

and r is the dimensionless radial coordinate defined relative 
to the conduit radius L. 

The boundary conditions for c’, and 4 are 

?, =O, 2 =0 for r = 0 
(7) 

_ _ 
e, = ein. Z,=O forr=o 

where the functions e, and ei are given in ref. [12]. 
The solutions to equations (4) and (5) under the boundary 

conditions shown in equations (7) are determined to be 

&, = aG, 
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where the B’s, M,, N,, Ml, N2 are calculated explicitly in 
terms of 0, YO, Y,. 

Heat transfer continuity on the inner separating surface is 
satisfied by the relation 

(10) 

This condition, after introducing an alternate dimensionless 
temperature on the separating surface as p = &/G, will yield 

p= -aG,o 
[( 

jI C,ln’o+C1lnw+Cl&+C,, 
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The C’s involved in /? are calculated explicitly in terms of 

0, Y0, Yi. 

HEAT FLUXES AND HEAT TRANSFER 
COEFFICIENTS 

The rate of heat flow per unit length of conduit through 
the outer and inner surfaces, considered positive when flow- 
ing into the outer region, is expressed, respectively, as [14] 

(12) 

Substituting trO and Z, from equations (8) and (9), respectively, 
into equations (12) 

Uo = =FG,[aGo(&D, +D>)+ A] 

Ui = --?nLFcoG,[oG&,+E,)+ &] (13) 
where factors D and E are calculated explicitly in terms of 

0, Y0, Y1. 
The Nusselt numbers are defined in this paper according 

to the definition given in ref. [ 121, for the case where the inner 
and outer wall heat transfer coefficients are based on the 
mixed flow bulk temperature of the combined inner and 
outer flows. The mixed flow bulk temperature is expressed 
as 

ii, 
1 
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(14) 

where C,,, A, and C,,, A, are the specific heat and cross- 
sectional area for the outer and inner passage, respectively. 

The heat transfer coefficients on the outer wall and on the 
inner separating surface (K,,, Fi,) are calculated from 

u, = (FWwa,, - Fm)2nL&, u, = (TWw,,, + E,,, - Tm)2noLI;, 

(15) 

where T,,,,,,, = 0. 
Selecting the fluid in the outer passage as the reference 

fluid, the Nusselt number on each surface based on its respec- 

tive diameter is defined by 

(Nu), = 2Lt’iJk,, (Nu), = 2wL6,/k,. (16) 

The expression for a in equation (6) can be changed into 

aG, = 
&o + ‘lw4/4 

-J,lG,+rlw4B/4-rlJ,IG,’ 
(17) 

Similarly, the factor aG, in equation (9) can be expressed as 

aG, = -aG,qw’/k,. (18) 

Equating the heat flow expressions in equations (13) and (15) 
and simplifying gives 

7 7, 

(19) 

DISCUSSION OF NUMERICAL RESULTS AND 
CONCLUSIONS 

A heat generation number Y = 30.0 for both inner and 
outer region flows and a numerical value for the ratio of the 
thermal conductivities of the two fluids ki = 1 are selected 
as an example for numerical calculations. Using four fixed 
values for the dimensionless heat exchanger number 7 (1, 10, 
- 1, - lo), curves are plotted in ratio forms in order to see 
the numerical influence of heat generation on the Nusselt 
numbers, as the ratios of the Nusselt numbers without to 
with heat generation ; Figs. 1 and 2, respectively. The numeri- 
cal value of the heat generation number used, was calculated 
from the data given in ref. [15]. This value corresponds 
to practical applications including various radioactive flow 
conditions. 

In Fig. 1 a comparison of the Nusselt numbers without 
heat generation to that with heat generation is presented by 
plotting the ratio of (Nu,) without heat generation to (Nu,) 
with heat generation, against the dimensionless radius of the 
separating wall. It is observed that for parallel flows with 
4 = 1.0 and 10.0, the ratio remains about 0.6313. But for 
counter-flows with q = - 1.0 and - 10.0, the ratio of the 
Nusselt numbers reach infinitely high values for particular 
core sizes around o = 0.4745 and 0.3348, respectively. It 
must be noted that the precise variation of the ratios for o 
values near the asymptotes is more complicated than that 
shown in the figure. The variation of the ratio around these 
w values shown in the figure represents a simplified variation. 

In Fig. 2, a comparison of the Nusselt numbers without 
heat generation to that with heat generation is presented by 
plotting the ratio of (Nu,) without heat generation to (Nu,) 
with heat generation, against the dimensionless radius of the 
separating wall. In the limiting case of w = 1, which cor- 
responds to a simple pipe flow, the ratio is 0.6093. For 
parallel flow arrangements with r = 1.0 and 10.0, the ratio 
variation has two asymptotes. In the case of q = 1.0, except 
in the region between UJ = 0.5290 and 0.5770, the ratio is 
positive. The physical significance of the negative values for 
the ratio is due to the fact that heat generation reverses the 
direction of the heat flux at the inner separating surface. In 
the case of q = 10.0 similar behavior holds. For counter-flow 
arrangements the variation of the ratio is mainly reversed. 
The special points of these variations are also shown in the 
figure. 
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FIG. 1. Ratio of outer Nusselt number without heat generation to with heat generation. 
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FIG. 2. Ratio of inner Nusselt number without heat generation to with heat generation. 
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